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The mean-field density matrix of a charged plasma of quantum particles with 
Maxwell-Boltzmann statistics in a confining external potential is obtained as a 
limit of the N-body canonical states for suitably scaled charges. Also, it is shown 
that the density profile of the quantum mean-field theory converges to the 
solution of the classical mean-field equation when the Planck's constant tends 
to zero. 
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1. I N T R O D U C T I O N  

Cons ide r  a p lasma of ident ical  charged q u a n t u m  particles obey ing  the 
M a x w e l l - B o l t z m a n n  statistics in the rmal  equi l ib r ium,  in the presence of 
a conf in ing  external  potent ia l .  In  the Har t ree  app rox ima t ion ,  the state of 
the system is descr ibed by a densi ty  mat r ix  t~, given by the fol lowing 
self-consistent  equa t ion :  

e(a/2)d- e .  n -  ze 

/~ - -  T r  e ~'/2~'~ - v . . . .  vc ( 1 . 1 )  

where V is the C o u l o m b  in te rac t ion  

V(x)  = 1/47z Ixl (1.2) 

* n(x) : =  I V(x - y )  n (y )  V dy (1.3) 
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Ve is the external potential, chosen such that Tr e I r /2)a  v,, < oo; and n is the 
particle density: 

n(x )=p(x ,  x) (1.4) 

where p(x, y) is the kernel of ~; finally, e = h2/rn, where m is the mass of 
the particles and, for the sake of notational simplicity, we have taken the 
inverse temperature fl = 1. 

In a recent paper Markowich tl~ proved existence and uniqueness of 
solutions to (1.1) and the classical limit, namely that, for e ~ O, the particle 
density (1.4) approaches the solution of the classical mean-field equation: 

e - v .  n ( x )  - V A x )  

n(x) = S dy e -  v . ,o , ) -  veo, i (1.5) 

In this paper we deal with the problem of obtaining the quantum 
mean-field theory by a limiting procedure from the original N-body equi- 
librium state. More precisely, we shall prove that fiN, the density matrix for 
the N-particle system with suitably scaled charges (~N-~/2),  is close, for 
large N, to the N-fold tensor product of the solution of (1.1). Incidentally, 
our result ensures the existence of solutions of (1.1), providing a simpler 
alternative to the proof given in ref. 1. The corresponding classical problem 
has been considered by Messer and Spohn ~ for bounded interaction and 
by Caglioti et al. ~3) and Kiessling ~41 for Coulomb interaction, to which we 
refer for further motivation. 

The basic idea of the analysis is the use of the Feynman-Kac formula 
and the Ginibre formalism, ~5'6) by which the problem is reduced to a classi- 
cal one on a suitable space of trajectories. This allows us to transfer to this 
context many ideas used for the classical problem. ~2-4~ Moreover, the same 
formalism is well suited for the study of the classical limit of the solution 
of (1.1), and we use it to extend a previous result obtained in ref. 1. In fact, 
the only assumption we need on the external potential lie is 

Ve is bounded below, continuous, and e -  v~ ~ L t(R 3) (1.6) 

The present analysis covers only the case of Maxwell-Boltzmann 
statistics; the physically relevant case of Fermi-Dirac statistics requires 
further consideration. 

In ref. 7 the same problem was considered for any statistics, but for 
interaction potential of a special kind. We finally notice that the positive- 
temperature Thomas-Fermi limit has been considered by various authors. 
See the monographs, ~8,91 the references quoted therein, and ref. 10. 
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2. THE  M E A N - F I E L D  LIMIT: S T A T E M E N T  OF THE 
P R O B L E M  A N D  RESULTS 

Consider the N-particle system in R 3 described by the following 
Hamiltonian: 

_ _ ~ N  ~ 1 N N 
Hu= 2~ A~+~-~ ~ V(xi--xj)+ ~ V~(x~) (2.1) 

i , j = l  i = 1  
i ~ j  

where di is the Laplacian associated to the ith particle, V is given by (1.2), 
and V,, satisfies (1.6). Under such conditions exp(--HN) is a positive 
trace-class operator in L2(R3U). We denote 

~N=ZNIe--HN; ZN=Tre-nN (2.2) 

the density matrix, and pN(xN, yN) its kernel, where xN=(x~ . . . . .  X N )  , 

yN=(y, ..... yN)UR 3N. The j-particle reduced density matrices P7 are 
defined by 

p~(X j, rJ)=f dZN-J pU(X:OZ u-j, WuZN-Q (2.3) 

By the Feynman-Kac formula 15"6) we have the following representa- 
tion of the kernel of exp( -HN) :  

(2.4) 

where co N = (col ..... coN), col: r 0 , / ; ]  ~ R 3 are (continuous) Brownian paths; 

N 

WxN. rU(acON) = I ]  P~,,..v,(dco,) (2.5) 
i ~ l  

where P~.,.(dco) is the conditional Wiener measure given co(0)=x, 
co(e) = y; and, finally, 

2• 
N N 

Uu(XN)= ~ V(x,-xj)+ ~ Ve(xi) (2.6) 
i , j ~ l  i = l  

i .~ j 

Also, we shall use the short-hand notation 
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Inserting this representation into (2.2), (2.3), we have 

P~(XJ' YJ) = I P~x,. r,(d~ PT( w j) (2.8) 

with 

pT(o~J)= f dZ~-J f P~z^,_j.z~_j(dpN-J) Z;~' exp[-O~(oJJwqN-J)] (2.9) 

ZN = I dXU f P~XN'xN(dcoN) exp[- -- O~v(Ofv)] (2.10) 

The quantum statistical mechanics problem can thus be formulated in 
terms of purely "classical" objects: trajectories of time interval e. Namely, 
the space of continuous closed paths 

Q~ = {03:03 ~ C( [0, ~;']; R 3 ); o)(0)= o9(~)} (2.11) 

which is a complete separable metric space with distance given by 

d(co, q )=  IIo~-~11~ :=  sup Iog(t)-r/(t)[ (2.12) 
t e [o,~] 

is endowed with the measure 

d_og = d.,c e.~,.~( dcn ) (2.13) 

Then, (2.9), (2.10) show that pU(ogJ)_do9 J (_dog J=  -/ l-Is = 1 -&~ is a probability 
measure on (f2,) J, which is in fact the j-particle marginal of the "classical" 
Gibbs measure on (/2~)N: 

pNN((-IJN ) _do,) N ~-. Z N ' exp[ - -  0~v  (( . /)N)] #(.O N (2.14) 

As in classical statistical mechanics, p~ minimizes the free-energy 
functional, defined on probability densities/~ on ((12~) u, _do9 u) by 

Fu(la)=l f lt(coN) log lt(o3U) do3 N + I l i a ( o f  v)O~u(OgU)do9 u (2.15) 

The following bound on pU is crucial to investigate the limit N ~ ~ :  

P r o p o s i t i o n  2.1. There exists a constant K > 0  such that for all 
N>.I, I<~j<~N, ~>0,  and ogY~ (12~)J: 

p~(o3J) <~ KJe3J/2 exp [ -  ~" P',((.oi) ] (2.16) 
i = I  
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The proof will be given in the next section. The above proposition 
makes the following statement a]most obvious. 

Proposi t ion  2.2. For every j>~ 1, the sequence {p~(coJ)_dcoJ}u>~j 
of probability measures on (g2~) j is tight, therefore precompact. Every 
cluster point is absolutely continuous, i.e., of the form pj(o9 j) _do9 j, and pj 
satisfies the bound (2.16). 

We are now in a position to formulate the main results of this section: 

T h e o r e m  2.1. For all j>~ 1, the sequence {p7(coJ)d_coi}u>~j con- 
verges weakly to a probability measure pj(cM)d_~o J on ( f2y ,  i.e., for all 
bounded continuous r (g2,) j ~ R: 

l im f ~o(coO p~ (J )  _d~oJ = I ~o(~0 p,(o~O _dcoJ (2.17) 

Moreover, pj(co j) factorizes: 

J 

Pj(('Oj) ~- I-[ P(('Oi) ( 2 . 1 8 )  
i = 1  

where p: f2~ -~ R+ minimizes the functional 

L(p) = i p(w) log p(og) d(og) 

+�89 _dm2p(o31)P(m2) PC(o31 -- co2) 

+f _d~, p(o~) P~(o~) (2.19) 

under the constraints p(co)>0, ~p(~o)_do9= 1. In fact, p is the unique 
minimizer off~ and satisfies the equation 

p(co) = N(p) -I e x p [ -  V* n~'(og)- V~(m)], ~o ~ f2~ (2.20) 

where N(p) is the normalizing factor and 

n(x) = f P'.~(dca) p(m) (2.21 ) 

The proof will be presented in the next section. Notice that 
Theorem 2.1 asserts only the convergence of the restriction p T( f 2 y  (i.e., to 

822'74, 1-2- I I 
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closed trajectories), implying apparently only the convergence of the 
diagonal part of the reduced density matrices. The following theorem will 
achieve the convergence problem. 

Theorem 2.2. Pointwise in R 3Jx R 3 J :  

J 

lim p~(X j, YJ)= I-I p(xi, yi) (2.22) 
N ~  i = l  

where p(x, y) is the kernel of the trace-class positive operator ~: 

e ( ~ / 2 ) d  - v * n ~ -  v~ 

t~ =;Fr e (~/2)~- V.n,- v, (2.23) 

Again, the proof is relegated to the next section. 
We conclude this section with a few remarks on related results which 

can be obtained using the same formalism. 

Remark 1. All results in this section extend, with minor modifica- 
tions, to the case where the system is confined to a bounded domain 
A ~ R 3 with smooth boundary and Ve is a continuous function on 1/. In 
this case, Ai in (2.1) should be supplemented with boundary conditions 
making it a positive self-adjoint operator in L2(A). The integral representa- 
tion (2.4) still holds with P~: ,. replaced by the adequate Wiener-type 
measure. ~1~ For example, for Dirichlet boundary conditions one has to 
use ~a(co) P~..,,(dco), where ~A(co)= 1, if w([0, e])=A, and =0  otherwise. 
Depending on the physical properties of the boundary, one also has to 
modify the interaction potential. For example, if the boundary is perfectly 
conducting, then V(x~-xj) in (2.1) should be replaced by V~(x~, x j )=  the 
fundamental solution of the Poisson equation in A with Dirichlet boundary 
conditions. As the latter is known to have the same local singularity as the 
Coulomb potential and is smooth outside the diagonal, the proof goes 
through. One recovers in this case the equation for the bounded case 
considered in ref. 1. 

Remark 2. As already mentioned in the Introduction, Theorem 2.2 
ensures the existence of solutions to Eqs. (1.1)-(1.4): these can be obtained 
as the limit of pU~(x, y). It may be worth at this point to say that the 
functional integration formalism and the variational principle associated to 
the "free energy" (2.19) can be used to settle directly the existence and 
uniqueness problems of Eq. (1.1). 

Indeed, every solution of Eq. (1.1) is seen to be a positive trace-one 
operator, the kernel of which is positive and has the form 

p(x, y)= f P~. y(dCo) p(o~) (2.24) 
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with some bounded, positive p(oJ); this is so because the r.h.s, of Eq. (1.1) 
has this property, once n(x )= p(x, x) is known, with 

p(o~) = N ( p ) - '  exp[ -- V �9 n'(r -- P~(og)] (2.25) 

for all Brownian paths co. In particular, a solution p of (2.25) restricted to 
g2, is a solution of Eq. (2.20), which extends by (2.25) t o a  measurable 
function on all Brownian paths. Conversely, every solution of Eq. (2.20) 
provides, via the extension (2.25) and Eq. (2.24), a solution of Eq. (1.1). 
Thus, it is sufficient to settle existence and uniqueness for Eq. (2.20). 

Now, by the positivity of V, any solution of Eq. (2.20) has an a priori 
bound N(p)-~ e x p [ -  F~(~)], which ensures finiteness offAp). So, if p~, p_, 
were solutions, then r + ( 1 - t )  P2) would be differentiable on 
[0, 1], with r  which is impossible due to the strict 
convexity (o f f ,  and hence) of r Existence of a solution is ensured by f~ 
being positive and with compact levels, implying that it attains its infimum 
on some p, which is a solution of Eq. (2.20) (this latter fact needs a 
discussion of the differentiability o f f ,  around p). 

3. PROOFS 

The proofs are similar to those in the classical case, '2-4) wi th some 
additional probability estimates. 

We shall include, for convenience, the external potential factor into the 
measure, i.e., define the probability measure on O~: 

dp(r = Z ~ '  exp[ - V~(co)] &o (3.1) 

and denote, as well, by d#(o~0 the product measure on ( f2y.  Notice that, 
by assumption (1.6), the definition (3.1) makes sense, i.e., the normalizing 
factor Ze is finite; indeed, by Jensen's inequality and Lemma 3.1 

Ze = f exp[ - ff~(w)] &o 

P 

j e - w,(~,(o)) dco 

= (2 ~e )  -3/2 ILe- V~ L, 

We have used here the following elementary property: 

(3.2) 
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L a m i n a .  Consider the mapping Tr: ~2, ~ f2, defined by 

( Tro3)(t) = og((t + r) modulo a) (3.3) 

Then, for all f ~  L1(s _do), 

f f(T,r _din = I f ( m )  _din (3.4) 

ProoL It is sufficient to prove (3.4) for cylindrical functions 

f(oo)=G(m(tt) ..... m(/,)), G~C(R"), bounded (3.5) 

This is done by inspection, making explicit use of the definition of _&o. 1 

Proof of Proposition 2. I. In terms of the measure (3.1), the defini- 
tion (2.9) of pjv is written as 

p~(co j) = Z~ -j exp[ - V~.(coJ) ] ~ dl~(~lu-J) exp[ - ff'~r (co j w I/N -J)] (3.6) 
d#(q N) exp[ -- ff'~v (qN) ] 

where we used the notation (2.7) and defined 

1 k 
V(xi--Xfl, 1 <~k<.N (3.7) WN(Xk)=~--# ,. = ,  

i ~ j  

[So, WN(X N) is the interaction part of the total potential energy UN(XN).] 
Putting 

ON(k ) = [ d/~(~o k) exp[ - I~v (cok)] (3.8) 
d 

we have, by the positivity of V, 

07(~o j) ~ Z U { e x p [  - V;(o~J)] } 
ON(N--j) 

Ou(N) 
(3.9) 

The bound (2.16) follows at once from the two inequalities below: 
There exist constants M, C > 0 such that, for all e > 0, all M >1 1, and 

all l <~ k <~ N - 1 ,  

ON(k) <~ MOu(k + 1 ) (3.10) 

and 

Z e ~  C~ -3/2 (3.11) 
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To prove (3.10), we start from the obvious inequality 

/,o* a - ~ ~ V'(os'- q) (3.12) 
i = 1  

By Jensen's inequality 

1 .~ ~(osi_r/)] f d/~(r/) exp [ -  ~-~,~ 

k 

>~exp[-- 2~---~I~dti~__,fdl-t(rl) V(ogi(l)-rl(t)) ] 

>~exp[- k--k-l f 'dtsup f dl~(q) g(~~ Jo (3.13) 

On the other hand, using again Jensen's inequality and Lemma 3.1, 

f d#(q) V(z-  q(t)) 

=z~ ' f dx fP~(dq ) {exp[ -~ f~Ve(x+r l ( t " ' d t ' ] }V( z - x -q ( t ) )  

• f dx e- ve(x)V(z - x - (T_,,q))(t) 

~< Ze-1(2ne)-3/2 sup f dx e- v,(x)V(z - x) (3.14) 
z E  R 3 

The sup in the last line is finite, because e-V'eL~ n L~ and VeL~.~oc. By 
(3.11), the bound is uniform in e. Inserting this into (3.13) and then into 
(3.12), one obtains (3.10). 

Finally, we prove (3.11). Let A be a ball in R3; we obtain a lower 
bound to Ze by restricting the integration to trajectories contained in A: 

Ze = f d_w exp[ - ~ ( o s ) ]  

>t I _dos cL~(os) exp[- P~(os)] 

>/{exp[ -sup Ve(X)] } f _dos ~A(os) (3.15) 
x ~ h  
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Now 

f_deo ~A(eo) = Tr e c~/zl'~" >>. const. ~-s/2 (3.16) 

as follows by a simple scaling argument, l 

Proof of Proposition 2.2. By (3.9) and (3.10), 

p Jr(co J) _do9 j ~< M j d#(oj -/) (3.17) 

As dl~(oJ j) is a probability measure on (f2~) j, hence almost concentrated on 
a compact, the tightness follows easily, The bound (2.16) yields at once the 
absolute continuity of--and is satisfied by--any cluster point. I 

Proof  of  Theorem 2. 1. This is essentially a rephrasing of the classical 
case, ~2~ but we include it here for the sake of completeness. 

Let p~(o9 j) _dco j be a cluster point, j~> 1. By the usual diagonal trick we 
can find a unique subsequence {Nk}, the j-marginals of which converge to 
pj((.o j) do,) j for all j. By the Hewitt-Savage theorem 1~2) there exists a Borel 
probability measure v on M+.t(E2~) such that 

pj(oJJ) d oJJ=[v(dp)p(dcol) . . .p(doJj) ,  j>~ l (3.18) 

In fact, v is supported by absolutely continuous measures p(eo)_do9 with 
p e L~ n L~(Q,,  _dw), because applying (3.18) to lI{= 1 f(co~) for positive f 
and using (2.16), we have 

from which 

I f (m)  p(co)_&o <~M II f IIL,a,~ 
L~(v) 

Thus, p itself satisfies (2.16). 
For every v associated via (3.18) to a sequence {Pj}j~= L we define the 

free energy functional 

f (v )  = s(v) + e(v) (3.19) 
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where, as is well known, It3) 

s(v) :=]lim ~ f pj(oJ j) log pj(oJ j) do) j 

= f v(dp) I p( o)log (3.20) 

I 
e(v):=~fv(dp) I P(O9,)P(O92)P~(Og, -- o92) -d~, -d~ 

+f v(do)1 0(o9) P~'(m)_d~ (3.21) 

Notice that s(v) is the kinetic entropy, which is minus the usual 
physical entropy. 

We now prove that the free energy N FN(PN), Eq. (2.15), converges 
along the chosen subsequence to f(v). By Propositions 2.1, 2.2 we easily 
obtain 

Iiuml f pUu(OgN) UN(O9N)d_OgN=e(v ) (3.22) 

By convexity and subadditivity of the entropy 

1_ 
f PJ(OgJ)log pj(ogJ) _do9 j 

J 

~< limNinf ~ f pT(o.)J)log p7(o9 j) do) j 

~IpN(Oa )logp,v(o9 )_din 'v (3.23) ~< liminf N N N N 

N 

and hence 

f(v) <~ lim inf FN(puu) (3.24) 
N 

On the other hand, by the variational principle for Fu, 

FN(p~) <. Fu(pN) 

Hence, with an easy calculation using the particular form (3.18) of PN 

lim sup Fu (p uu) <~ f(v) (3.25) 
N 
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We now prove that v is concentrated on those p minimizing the 
functional f~, Eq. (2.19). Indeed, if ~, {~j} is another pair connected by 
(3.18), we have again N - FN(PN) <~ FN(PN), implying f(v) <~ f(~). As f(v) = 

v(dp)f,(p) by (3.19)-(3.21), the claim is proved. 
The strict convexity o f f ,  implies a unique minimizer p, hence v=6p 

and the factorization property (2.18) holds. Moreover, the uniqueness of 
the limit allows us to pass from subsequence to sequence. 

Finally, we show that p fulfills Eq. (2.20), which formally means that 
the minimum point p is a stationary point off , .  In order to avoid discuss- 
ing differentiability of f , :M+.,(12,)-- ,  [0, oo] around p~, we provide a 
direct proof, exploiting that p = litany piN. 

We start with Eq. (3.6) for j =  1, which can be written using (3.8) as 

ON(N-- 1) [ 1 N - ,  
PlU(~162176 ~ u ( ; )  fexp_-~,_~ 

• ~ =  I(.N-,) &(.N-,) 

P'(co - ~)I 

(3.26) 

where the probability density -N-1 PN-I on ((f2,) N-I, dp(r/N- l)) is given by 

pN_~(~/ ')----0N(N--I exp -- 1-- WN_,(r/N- ) (3.27) 

By the same proof as for Proposition 2.1, the marginal distributions 
of ~ ,  say ~7, satisfy the same kind of bound, Eq. (3.9), as pjV, and the 
proof for pff can be easily adapted to conclude convergence of P7 to 
the same limit as p7 [it is sufficient to replace the "inverse temperature" 
1 - 1/(N+ 1) instead of 1 whenever necessary]. Moreover, the ratio CN = 
ON(N--1)~ON(N) is bounded by (3.10), so 

? := lim sup CN < 
N 

Using Jensen's inequality in (3.26), we have the lower bound 

p~(co) >/Z~-' exp[ - - '  v~(co)] 
X C N e x p I - ! f ~ d t f  d#(rl)fi~-'(rl)V(co(t,-rl(t)) ] (3.28) 

yielding, by the discussion above, 

p(og) ~> ?Z~-' exp[ - V~(m) - V �9 n~(og)] (3.29) 
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On the other hand, putting 

V(x) if Ixl > 6  
V~(x) = ~ V(6) if Ixl ~< 6 (3.30) 

we have, expanding the exponential, 

CNZ~ -~ exp[--  P~({o)] [ dP(qs- ') DUN?- ](tiN-1) pNl (m) <<. 

[ 'U- '  ? 
xexp - ~  ~ P;(co-qi) 

i ~ l  

. .<CNZ2_,exp[_P;(o~) ] ~ ( - 1 ) "  
n = 0  F/! 

N - - I  

• y ,  I d ~ t n . - ,  ) - N - l ,  N - ,  PN_ 11,~ ) 
J l , . . . , J n  = 1 

n 

• ]-I P~(~o - ,j,) 
i = l  

= C u Z ~ _ , e x p [ _ p : ( w ) ]  ~ (-1)" { ( N - 1 ) . . . ( N - n +  I) 
. = o  n! )v-;;' 

In the last term we just split the contribution of (j~ ..... j',,) with at least two 
equal indices into R~v(6). It is easy to see that R,%(6)= O(N -~) for every 
n and 6. Therefore, the nth term of the series (3.31) converges as N--* oo 
to 

( -  1)" 
- -  [ V ~  �9 n~ (co)] 

n! 

and is uniformly bounded by 1/(n! 6"). Letting N ~  oo and then 6 ",, 0, we 
have 

p({o) ~< _cZj ' exp[ - P~(co) - ( V * ~))~ (09)3 (3.32) 

where _c := lim infN CN. Equations (3.22) and (3.29) prove (2.20). We notice 
that, along the way, we proved the convergence of CN: 

I i m 0 N ( N - ! ) - N ( B ) -  ~ | (3.33) 
ON(N) 
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Proof of Theorem 2.2. It is sufficient to remark that the bounds 
(3.28) and (3.31) hold true for all (not necessarily closed) Brownian paths 
09. As we have already proved the convergence as N--* oo of the r.h.s, of 
these equations, we have, after letting 6 "~ 0, 

lim sup p ~(r = lim inf p~(og) = N(p) - ' Z~ 1 exp[ - ff~(r - ( V * n~)(r 
N N 

(3.34) 

for all paths o9. By a similar argument, one obtains the pointwise 
1-'[i= 1 P(O~i) �9 As also the bound (3.9) holds for convergence of pjV(og0 to J 

arbitrary paths o9 j, the dominated convergence theorem applied to (2.8) 
accomplishes the proof. I 

4. THE CLASSICAL LIMIT 

In this section we shall explore the limit e "~ 0 and prove the con- 
vergence of the particle density of the quantum mean-field theory, which is 
the solution of Eqs. (2.20), (2.21), to the solution of the corresponding 
classical problem, Eq. (1.5). In doing this we use a compactness argument 
in conjunction with the uniqueness of the solution of Eq. (1.5). 

Theorem 4.1. Let p~, n, be the unique solution of Eqs. (2.20), 
(2.21), and n o be the unique solution of Eq. (1.5). The probability measures 
{n,(x)dx}~>o on R 3 converge weakly to no(x)dx as e ",, 0. Moreover, 
n,--* no in H - ' ( R  3) and pointwise. 

Proof. We start by proving the tightness of the family n~(x)dx, 
e ~ (0, 1 ]. To this aim, using the scaling property of Wiener measure and 
Jensen's inequality, we obtain from (2.16) 

He(X ) ~ K8 3/2 f P.%x(dO)) exp[ -- V~(og)] 

<~ K fj  dt ~ P~o(dog) exp[ -  Ve(X + ,fi (4.1) 

Hence, separating the contribution of paths which do not leave the ball of 
radius (R/e) 1/2, we have 
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I n~(x) dx 
.vl > R 

<<. K f~ dt f P~o(dw) fi.._i>Rdxexp[--V~(x + x//e w(t})] 

</c IP~o( {~o: ii~ll ~/> (Rle)'/2 }) lie "<11, 

+ f,x,>._ e-"'"x} 
where we used Ix+v/e~o(t)l > R - x / ~ ,  for IxJ > R  and Iw(t)l <(R/e) m. 
Therefore, 

sup I n=(x)dx<K[PAo({o~:ll<oll~>_-,/-R))lle-"ll, 
L:E I0, 1 ] I x I > R  

+ (21r)-3/2 fl e-VaXidx] (4.2) 
xl > R-,/-~ 

converges to zero as R--* oo, proving tightness. 
Next, we show that any limit point of n~(x) dx as e --* 0 is of the form 

rT(x) dx, with t~ solution of Eq. (1.5). The bound (4.1) implies 

Iln,ll ~ ~< (2n) -3/2 Ke -min v< := M (4.3) 

and then the absolute continuity of any limit point. By (2.20), (2.21), and 
scaling, we have for every e > 0 

n~(x) = N~- l f (21r) 3/2 P ~o( do~ ) 

•  (4.4) 

• [ V . n . ( x + : w ( t ) , + V . ( x + ~ o ~ ( t , ) ] d x }  (4.5) 

If ek "~ 0 and n:,--+ #7, in the sense of the weak convergence of measures, 
then 

lim V .  n,k(x) = V* Fi(x), VxeR 3 (4.6) 
~k 
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Indeed, with V~ defined in Eq. (3.30) and using (4.3), we have 

Va,n~,(x)<<.V*n~(x)<<.Va,n~k(x)+M ~ V(y) dy 
Lvl < 6 

and hence 

Va * Ii(x) ~< lim inf V �9 n~k(x) 
s 

~< lim sup V �9 n~(x) 
ek 

<~ v~ �9 ~(x) + 0(6 2) 

which implies (4.6) by the arbitrariness of 6. 
We shall show below that there exists a constant A such that 

sup IV,n~(x+v/~u)-V,n~(x)l~A.,/~lul,  Vu~R 3, lu lx /~<l  
x ~  R 3 

(4.7) 

Combining (4.6), (4.7), and the positivity of V, we obtain, by Lebesgue's 
theorem, the convergence as e, "~ 0 of the numerator in the r.h.s, of (4.4) 
to exp[ - V * ~(x) - Ve(x) ]. In the same way also N~k converges to the nor- 
malization factor of the limit, implying that t~ is a solution of Eq. (1.5). By 
the uniqueness of the latter, the weak convergence follows. Finally, by (4.6) 
also pointwise convergence follows. 

To prove (4.7), let D l be the ball of center x and radius (x//~ lul) ~/2, 
and D2 be the ball of center x and radius 2. Then 

[ I [ V(x- Y + x/~e u)- V(x- y) ] n~(y) dy i 

<.Mfo [V(x-y+x/~u)+ V(x-y)]dy 
I 

(4.8) 

For y e D l ,  both Ix-y+x/~eul and Ix-y l  are less than 2(x/~ lul) t/2, so 
the first term in (4.9) is dominated by 2M lul x/~. Outside DI we use 
Lagrange's theorem: 

,5u IV(x-y+x/~eu)-V(x-y)h=4ztlx_y+Ox/~eu] z, 0~(0 ,1 )  
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For yeD2\Dt ,  Ix-y+Ov/~ul<-2+lul.,/~, so the second integral is 
majorized by 

M v/-~ lur f 1 
i.vl ,< 3 4n lyl 2dy 

Finally, on R3\D2 we exploit boundedness of I x -  y + 0 ~ u1-2 ~< 1, and 

fRO\D2 n~(y) dy<~ 1 

We now prove convergence in H-*.  To this aim, we argue that pd~o), 
besides minimizing rE, Eq. (2.19), also maximizes the concave functional 

g,(p) = -- �89 f n(x) n(y) V ( x -  y) dx dy 

- log f _&o exp[ - V * n ' (og)-  P~(w)] (4.9) 

where again n is the particle density of p, Eq. (2.21). The advantage of 
using g, is that it depends on p only through n; we shall write g,(n) from 
now on. 

We also consider the classical functional 

go(n) = _ I f  n(x) n(y) V ( x -  y) dx dv 
2 

dx va .~ ) --log f ~ e  - v ' ' ' x ' -  (4.10) 

which is maximized by no. [The factor (2he) -3/2 is inserted to take into 
account the kinetic energy as in the quantum case; notice that formally 
g o + ~ l o g e i s t h e e  ~ 0limit  o f g , + 3 1 o g e . ]  

For an arbitrary probability density n in the domain of g,, we have 
with f i n=n-n , ,  and using Eq. (2.20) for n,, 

g,(n,)-  g,(n)= �89 f fin(x)( V * fin)(x) dx 

+ f ndx)( V * fin)(x) dx 

+log f d_ogp,(og)exp[-V*-~'(og)] (4.11) 
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By Jensen's inequality and Lemma 3.1 

log ~ _do9 p~(co) exp[ -- V �9 ~'n~(co)] 

> ~ - e  dt d ogp~(og)(V,6n)(og(t)) 

- I n,(x)(V , 5n)(x) dx 

implying 

Similarly, 

Hence 

Angelescu et  al,  

g~(n~) - g~(n) ~ �89 f On(x) V * cSn(x) dx = �89 II~nll =_~ (4.12) 

go(no) - go(n) >1 �89 Iln - noll 2_, ( 4 . 1 3 )  

The results in Section 2 can be regarded as providing a mathematical 
basis for the Hartree approximation, that is, a rigorous derivation of 
Eq, (1.1) in terms of particle systems, We treated here the simplest case 
of repulsive interactions and classical statistics. More interesting, both 

5. CONCLUDING REMARKS 

IIn~-nollZ_, ~< [g~(n~)- go(n~)] + [go(no) -  g~(no)] (4.14) 

Finally, the square brackets in (4,14) both converge to zero for e ~ 0 by 
the dominated convergence theorem, e.g., 

g~(n~)- go(n~) 

= log J" dx exp[ - V * n,(x) - V~(x)] 

- l o g  f dx I P~~176 [ -  _le fo dt ( V ,  n~+ Vr x/~og(t))] 

(4.15) 

in which both terms converge to log ~ dx e x p [ - V ,  no(x)-Ve(x)] ,  as in 
the first part of the proof, 



Quantum Coulomb System 165 

physically and mathemat ica l ly ,  would be the case of F e r m i - D i r a c  statistics 
and /o r  a t t ract ive (gravi ta t ional )  forces, which, as far as we know, have not  
been t reated r igorously in the literature. 

Scaling charges as N-1/2 at fixed tempera ture  is clearly unphysicai ,  as 
the rat io  charge/mass  approaches  zero as N ~  oo. Other ,  physically more 
reasonable  in terpre ta t ions  of the result are, however,  possible: e.g., in a 
bounded  domain  and with V e = 0 the same convergence holds when scaling 
tempera ture  like N1/3, and both mass and charge like N-~/3, which would 
be "close" for large N to a hot,  dense plasma. Though  not  much insight is 
gained in this way concerning the range of appl icabi l i ty  of the mean-field 
approx imat ion ,  it is, however,  confort ing to see that  the lat ter  has some 
relat ion to a genuine N-body  problem.  

Another  advan tage  of presenting Hart ree 's  theory as a limit is that  it 
provides a construct ive app roach  to the existence problem for the mean-  
field equat ion  from physical  considera t ions  and, in cases of nonuniqueness,  
it should give cri teria for selecting relevant solutions. 
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